Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Introduction: Endothelial glycocalyx damage occurs in numerous pathological conditions and results in endotheliopathy. Extracellular vesicles, including exosomes and microvesicles, isolated from adipose-derived mesenchymal stem cells (ASCs) have therapeutic potential in multiple disease states; however, their role in preventing glycocalyx shedding has not been defined. We hypothesized that ASC-derived exosomes and microvesicles would protect the endothelial glycocalyx from damage by LPS injury in cultured endothelial cells. ⋯ However, in the presence of LPS injury, both exosomes and microvesicles protect the glycocalyx layer. This effect seems to be mediated by HAS1. Level of Evidence : Basic science study.
-
Background: Numerous studies have shown that pyroptosis is associated with sepsis progression, which can lead to dysregulated host immune responses and organ dysfunction. Therefore, investigating the potential prognostic and diagnostic values of pyroptosis in patients with sepsis is essential. Methods: We conducted a study using bulk and single-cell RNA sequencing (scRNA-seq) from the Gene Expression Omnibus database to examine the role of pyroptosis in sepsis. ⋯ The single-cell analysis identified a macrophage subpopulation characterized by gasdermin D (GSDMD) expression that may be involved in pyroptosis regulation, which was associated with the prognosis of sepsis. Conclusion: We developed and validated a risk score for sepsis identification based on 10 PRGs, four of which also have potential value in the prognosis of sepsis. We identified a subset of gasdermin D macrophages associated with poor prognosis, providing new insights into the role of pyroptosis in sepsis.
-
Introduction: Acute respiratory distress syndrome (ARDS) is a severe hypoxemic respiratory failure with a high in-hospital mortality. However, the molecular mechanisms underlying ARDS remain unclear. Recent findings have indicated that the onset of severe inflammatory diseases, such as sepsis, is regulated by epigenetic changes. ⋯ Conclusion: Acute respiratory distress syndrome elevates Setdb2 , apoptosis of VECs, and vascular permeability. Elevation of histone methyltransferase Setdb2 suggests the possibility to histone change and epigenetic modification. Thus, Setdb2 may be a novel therapeutic target for controlling the pathogenesis of ARDS.
-
Objective: Histone deacetylase inhibitors (HDACIs) have been reported to improve survival in rats with hemorrhagic shock (HS). However, no consensus exists on the most effective HDACIs and their administration routes. We herein aimed to determine the optimal HDACIs and administration route in rats with HS. ⋯ TSA treatment than in those who received i.v. TSA treatment. Conclusions: The i.v. effect was superior to the i.p. effect, while nonselective and isoform-specific classes I and IIb HDACIs had similar effects.