Journal of biomedical science
-
Glutamatergic neurotransmission, particularly of the NMDA receptor type, has been implicated in the excitotoxic response to several external and internal stimuli. In the present investigation, we report that S-methyl-N,N-diethylthiocarbamate sulfoxide (DETC-MeSO) selectively and specifically blocks the NMDA receptor subtype of the glutamate receptors, and attenuates glutamate-induced neurotoxicity in rat-cultured primary neurons. Other major ionotropic glutamate receptor subtypes, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate, were insensitive to DETC-MeSO both in vitro and in vivo. ⋯ Glutamate-induced (45)Ca2+ uptake and Ca2+ influx, however, were partially blocked by DETC-MeSO, and this is consistent with both in vitro and in vivo studies in which DETC-MeSO partially blocked mouse brain glutamate receptors. In addition, DETC-MeSO pretreatment effectively prevented seizures in mice induced either by NMDA, ammonium acetate, or ethanol-induced kindling seizures, all of which are believed to be mediated by NMDA receptors. These data demonstrate that DETC-MeSO produces the neuroprotective effect through antagonism of NMDA receptors in vivo.