American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Apr 2014
C-X-C Motif Chemokine 13 (CXCL13) is a Prognostic Biomarker of Idiopathic Pulmonary Fibrosis.
C-X-C motif chemokine 13 (CXCL13) mediates B-cell trafficking and is increased, proportionately to disease activity, in many antibody-mediated syndromes. Dysregulated B cells have recently been implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. ⋯ CXCL13 is increased and is a prognostic biomarker in patients with IPF, and more so than in patients with COPD. This contrast indicates CXCL13 overexpressions are intrinsic to IPF, rather than an epiphenomenon of lung injury. The present data implicate CXCL13 and B cells in IPF pathogenesis, and support considerations for trials of specific B-cell-targeted therapies in patients with this intractable disease.
-
Am. J. Respir. Crit. Care Med. · Apr 2014
ReviewHow Outcomes are Defined in Clinical Trials of Mechanically Ventilated Adults and Children.
Systematic reviews have considerable potential to provide evidence-based data to aid clinical decision-making. However, there is growing recognition that trials involving mechanical ventilation lack consistency in the definition and measurement of ventilation outcomes, creating difficulties in combining data for meta-analyses. To address the inconsistency in outcome definitions, international standards for trial registration and clinical trial protocols published recommendations, effectively setting the "gold standard" for reporting trial outcomes. ⋯ Ventilation outcomes reported in trials over the last 6 years typically fall into four domains: measures of ventilator dependence; adverse outcomes; mortality; and resource use. We highlight the need, first, for agreement on outcome definitions and, second, for a minimum core outcome set for trials involving mechanical ventilation. A minimum core outcome set would not restrict trialists from measuring additional outcomes, but would overcome problems of variability in outcome selection, measurement, and reporting, thereby enhancing comparisons across trials.
-
Am. J. Respir. Crit. Care Med. · Apr 2014
Magnetic Resonance Imaging Detects Changes in Structure and Perfusion, and Response to Therapy in Early Cystic Fibrosis Lung Disease.
Studies demonstrating early structural lung damage in infants and preschool children with cystic fibrosis (CF) suggest that noninvasive monitoring will be important to identify patients who may benefit from early therapeutic intervention. Previous studies demonstrated that magnetic resonance imaging (MRI) detects structural and functional abnormalities in lungs from older patients with CF without radiation exposure. ⋯ MRI detected abnormalities in lung structure and perfusion, and response to therapy for exacerbations in infants and preschool children with CF. These results support the development of MRI for noninvasive monitoring and as an end point in interventional trials for early CF lung disease. Clinical trial registered with www.clinicaltrials.gov (NCT00760071).