American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Aug 2018
The Lung Microbiota of Healthy Mice Are Highly Variable, Cluster by Environment, and Reflect Variation in Baseline Lung Innate Immunity.
The "gut-lung axis" is commonly invoked to explain the microbiome's influence on lung inflammation. Yet the lungs harbor their own microbiome, which is altered in respiratory disease. The relative influence of gut and lung bacteria on lung inflammation is unknown. ⋯ In the lungs of healthy mice, baseline innate immune tone more strongly reflects local (lung-lung) microbe-host interactions than remote (gut-lung) microbe-host interactions. Our results independently confirm the existence and immunologic significance of the murine lung microbiome, even in health. Variation in lung microbiota is likely an important, underappreciated source of experimental and clinical variability. The lung microbiome is an unexplored therapeutic target for the prevention and treatment of inflammatory lung disease.
-
Am. J. Respir. Crit. Care Med. · Aug 2018
Dicer1 Deficiency in the Idiopathic Pulmonary Fibrosis Fibroblastic Focus Promotes Fibrosis by Suppressing MicroRNA Biogenesis.
The lung extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) mediates progression of fibrosis by decreasing fibroblast expression of miR-29 (microRNA-29), a master negative regulator of ECM production. The molecular mechanism is undefined. IPF-ECM is stiffer than normal. Stiffness drives fibroblast ECM production in a YAP (yes-associated protein)-dependent manner, and YAP is a known regulator of miR-29. Therefore, we tested the hypothesis that negative regulation of miR-29 by IPF-ECM was mediated by mechanotransduction of stiffness. ⋯ Our data identify suppression of fibroblast Dicer1 expression in the myofibroblast-rich IPF fibroblastic focus core as a central step in the mechanism by which the ECM sustains fibrosis progression in IPF.