American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Jan 2022
Case ReportsBrain Responses to Propofol in Advance of Recovery From Coma and Disorders of Consciousness: A Preliminary Study.
Rationale: Predicting recovery of consciousness in unresponsive, brain-injured individuals has crucial implications for clinical decision-making. Propofol induces distinctive brain network reconfiguration in the healthy brain as it loses consciousness. In patients with disorders of consciousness, the brain network's reconfiguration to propofol may reveal the patient's underlying capacity for consciousness. ⋯ Measurements and Main Results: The adaptive reconfiguration index was significantly higher in patients who later recovered full consciousness (U value = 21, P = 0.008) and able to discriminate with 100% accuracy whether the patient recovered consciousness. Conclusions: The adaptive reconfiguration index of patients who recovered from a disorder of consciousness at 3-month follow-up was linearly separable from that of patients who did not recover or remained in a chronic disorder of consciousness on the single-subject level. EEG and propofol can be administered at the bedside with few contraindications, affording the adaptive reconfiguration index tremendous translational potential as a prognostic measure of consciousness recovery in acute clinical settings.
-
Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. ⋯ The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.