American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Jun 2024
Lung Transcriptomics Links Emphysema to Barrier Dysfunction and Macrophage Subpopulations.
While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. ⋯ This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.
-
Am. J. Respir. Crit. Care Med. · Jun 2024
A Nanopore Sequencing-based Pharmacogenomic Panel to Personalize Tuberculosis Drug Dosing.
Rationale: Standardized dosing of antitubercular drugs leads to variable plasma drug levels, which are associated with adverse drug reactions, delayed treatment response, and relapse. Mutations in genes affecting drug metabolism explain considerable interindividual pharmacokinetic variability; however, pharmacogenomic assays that predict metabolism of antitubercular drugs have been lacking. Objectives: We sought to develop a Nanopore sequencing panel and validate its performance in patients with active tuberculosis (TB) to personalize treatment dosing. ⋯ INH clearance was 2.2 times higher among intermediate acetylators and 3.8 times higher among rapid acetylators, compared with slow acetylators (P < 0.0001). RIF clearance was 17.3% (2.50-29.9) lower in individuals with homozygous AADAC rs1803155 G→A substitutions (P = 0.0015). Conclusions: Targeted sequencing can enable the detection of polymorphisms that influence TB drug metabolism on a low-cost, portable instrument to personalize dosing for TB treatment or prevention.
-
Am. J. Respir. Crit. Care Med. · Jun 2024
Longitudinal Lower Airway Microbial Signatures of Acute Cellular Rejection in Lung Transplantation.
Rationale: Acute cellular rejection (ACR) after lung transplant is a leading risk factor for chronic lung allograft dysfunction. Prior studies have demonstrated dynamic microbial changes occurring within the allograft and gut that influence local adaptive and innate immune responses. However, the lung microbiome's overall impact on ACR risk remains poorly understood. ⋯ However, a subgroup analysis of those who developed ACR beyond 1 month revealed delayed enrichment with oral commensals occurring at the time of ACR diagnosis compared with baseline, when enrichment with more traditionally pathogenic taxa was present. In longitudinal models, dynamic changes in α-diversity (characterized by an initial decrease and a subsequent increase) and in the taxonomic trajectories of numerous oral commensals were more commonly observed in subjects with ACR. Conclusions: Dynamic changes in the lower airway microbiota are associated with the development of ACR, supporting its potential role as a useful biomarker or in ACR pathogenesis.
-
Am. J. Respir. Crit. Care Med. · Jun 2024
Intracellular Pseudomonas aeruginosa within the Airway Epithelium of Cystic Fibrosis Lung Tissues.
Rationale: Pseudomonas aeruginosa is the major bacterial pathogen colonizing the airways of adult patients with cystic fibrosis (CF) and causes chronic infections that persist despite antibiotic therapy. Intracellular bacteria may represent an unrecognized reservoir of bacteria that evade the immune system and antibiotic therapy. Although the ability of P. aeruginosa to invade and survive within epithelial cells has been described in vitro in different epithelial cell models, evidence of this intracellular lifestyle in human lung tissues is currently lacking. ⋯ We observed those events occurring in lung regions with high bacterial burden. Conclusions: This is the first study describing the presence of intracellular P. aeruginosa in CF lung tissues. Although intracellular P. aeruginosa in airway epithelial cells is likely relatively rare, our findings highlight the plausible occurrence of this intracellular bacterial reservoir in chronic CF infections.