Medical engineering & physics
-
The prompt and adequate detection of abnormal cardiac conditions by computer-assisted long-term monitoring systems depends greatly on the reliability of the implemented ECG automatic analysis technique, which has to discriminate between different types of heartbeats. In this paper, we present a comparative study of the heartbeat classification abilities of two techniques for extraction of characteristic heartbeat features from the ECG: (i) QRS pattern recognition method for computation of a large collection of morphological QRS descriptors; (ii) Matching Pursuits algorithm for calculation of expansion coefficients, which represent the time-frequency correlation of the heartbeats with extracted learning basic waveforms. ⋯ Although the GLS was selected to comprise almost all types of appearing heartbeat waveforms in each file, the guaranteed accuracy (sensitivity between 90.7% and 99%, specificity between 95.5% and 99.9%) was reasonably improved when including patient-specific local learning set (sensitivity between 94.8% and 99.9%, specificity between 98.6% and 99.9%), with optimal size found to be about 3 min. The repeating waveforms, like normal beats, blocks, paced beats are better classified by the Matching Pursuits time-frequency descriptors, while the wide variety of bizarre premature ventricular contractions are better recognized by the morphological descriptors.