Medical engineering & physics
-
Randomized Controlled Trial
Genetic fuzzy modelling and control of bispectral index (BIS) for general intravenous anaesthesia.
Based on an adaptive genetic fuzzy clustering algorithm, a derived fuzzy knowledge model is proposed for quantitatively estimating the systolic arterial pressure (SAP), heart rate (HR), and bispectral index (BIS) using 12 patients and it validates them according to pharmacological reasoning. Also, a genetic proportional integral derivative controller (GPIDC) to adaptive three controller parameters and a genetic fuzzy logic controller (GFLC) to adaptive controller rules using genetic algorithms (GAs) were simulated and compared each other in a patient model using the BIS value as a controlled variable. Each controller was tested using a set of 12 virtual patients undergoing a Gaussian random surgical disturbance repeated with BIS targets set at 40, 50, and 60. ⋯ Furthermore, when the simulation results in these two controllers were compared with routine standard practice of 12 clinical trials (i.e., manual control) in BIS target set at 50, the values of PTABC in both GPIDC and GFLC groups were significantly higher (P < 0.05) than in the manual control group. In contrast, there were no significant differences (P > 0.05) for these three groups in terms of drug consumption. This indicates that either GPIDC or GFLC can control the BIS target set at 50 better than manual control, although the similar drug consumption is used.
-
Spectral analysis is now a standard procedure for analyzing the electroencephalograms (EEG) obtained by polysomnographic recordings. These numerical methods assume an artifact-free EEG since artifacts create spurious spectral components. Our aim was the development of a QRS artifact removal technique that might be applied to full night EEG with a minimal human intervention. ⋯ The tests on artifact-simulated and real data were checked on the residual ECG spectral components present in the cleaned EEG. The best results are obtained by the MF when the structuring element is an artifact template defined either directly on the EEG or on the ICA ECG component. Further developments are required to identify and subtract the T-wave artifacts.