Medical engineering & physics
-
The global compliance of a fixed-volume, incompressible compartment may play a significant role in determining the inherent vascular compliance. For the intracranial compartment, we propose that the free-displacement of the cerebral spinal fluid (CSF) directly relates to cerebral vascular compliance. To test this hypothesis, an in vivo surrogate intracranial compartment was made by enclosing a rabbit's kidney within a rigid, fluid-filled container. ⋯ The calculated C(app) for each experiment's closed-box state was favorably compared to a time-domain compliance assessment method at the mean heart rate. In addition, it was revealed that C(app) in the open-box state was greater than that in the closed-box state only when the calculations were performed at frequencies lower than the heart rate and closer to the ventilation rate. These experimental results support the concept that the vessel compliance of vascular systems enclosed within a rigid compartment is a function of the global compartment compliance.
-
Comparative Study Controlled Clinical Trial
Comparison of subjective and objective measurements of balance disorders following traumatic brain injury.
Patients with mild traumatic brain injury (TBI) often complain of dizziness. However, these problems may be undetected by a clinical exam. Therefore, the purpose of this study was to evaluate the relationships between the subjective and objective measures of balance impairment. ⋯ Overall, the motion of the COM predicted between 42 and 69% of the DHI score. The present study has demonstrated that objective measurements can quantify the patient's functional deficits. Therefore, these objective measurement techniques should be used to assess the clinical complaints of imbalance from patients with TBI.
-
Randomized Controlled Trial
Genetic fuzzy modelling and control of bispectral index (BIS) for general intravenous anaesthesia.
Based on an adaptive genetic fuzzy clustering algorithm, a derived fuzzy knowledge model is proposed for quantitatively estimating the systolic arterial pressure (SAP), heart rate (HR), and bispectral index (BIS) using 12 patients and it validates them according to pharmacological reasoning. Also, a genetic proportional integral derivative controller (GPIDC) to adaptive three controller parameters and a genetic fuzzy logic controller (GFLC) to adaptive controller rules using genetic algorithms (GAs) were simulated and compared each other in a patient model using the BIS value as a controlled variable. Each controller was tested using a set of 12 virtual patients undergoing a Gaussian random surgical disturbance repeated with BIS targets set at 40, 50, and 60. ⋯ Furthermore, when the simulation results in these two controllers were compared with routine standard practice of 12 clinical trials (i.e., manual control) in BIS target set at 50, the values of PTABC in both GPIDC and GFLC groups were significantly higher (P < 0.05) than in the manual control group. In contrast, there were no significant differences (P > 0.05) for these three groups in terms of drug consumption. This indicates that either GPIDC or GFLC can control the BIS target set at 50 better than manual control, although the similar drug consumption is used.
-
Spectral analysis is now a standard procedure for analyzing the electroencephalograms (EEG) obtained by polysomnographic recordings. These numerical methods assume an artifact-free EEG since artifacts create spurious spectral components. Our aim was the development of a QRS artifact removal technique that might be applied to full night EEG with a minimal human intervention. ⋯ The tests on artifact-simulated and real data were checked on the residual ECG spectral components present in the cleaned EEG. The best results are obtained by the MF when the structuring element is an artifact template defined either directly on the EEG or on the ICA ECG component. Further developments are required to identify and subtract the T-wave artifacts.
-
Agitation-sedation cycling in critically ill patients, characterized by oscillations between states of agitation and over-sedation, damages patient health and increases length of stay and cost. A model that captures the essential dynamics of the agitation-sedation system and is physiologically representative is developed, and validated using data from 37 critical care patients. ⋯ These statistical model validation metrics are 5-13% better than a previously validated model. Hence, this research provides a platform to develop and test semi-automated sedation management controllers that offer the significant clinical potential of improved agitation management and reduced length of stay in critical care.