Oncology reports
-
In the present study, we investigated the role of UHRF1 (ubiquitin-like protein containing PHD and RING finger domains 1) in proliferation, invasion and migration of breast cancer cells, and the potential mechanisms were also explored. Cell proliferation was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; cell cycle distribution and apoptosis were evaluated using flow cytometry; protein expression was determined by western blotting; angiogenesis of xenografts was assessed by microvessel density (MVD); cell invasion was measured using transwell chamber; cell migration was determined by wound scratching assay. Our results demonstrated that UHRF1 transfection conferred serum independence to MDA-MB-231 cells, G1 phase shortage and apoptosis suppression, accompanied with an increased expression of cyclin D1 and decreased expression of Bax. ⋯ UHRF1 induced growth of MDA-MB-231 cells by promoting tumor vessel formation in vivo. In conclusion, UHRF1 promoted the proliferation of breast cancer cells by apoptosis inhibition, G1 phase shortage and promotion of tumor vessel formation, and pro-invasion and pro-migration activity was also observed by interacting with PTEN and maspin. Thus, UHRF1 may serve as a new therapy target for breast cancer.
-
The ERBB proteins are cell membrane tyrosine kinase receptors. Among these receptors, ERBB1 (EGFR or HER1) and ERBB2 (HER2/Neu) have been reported to be the most important in terms of the development and progression of squamous cell carcinoma of the esophagus (SCC). Thus, targeting of ERBB1 and ERBB2 may become a promising strategy to treat SCC. ⋯ In conclusion, combination of cetuximab and trastuzumab revealed a synergistic antitumor effect for SCC in vitro and in vivo. The antitumor effect may be induced by the inhibition of the phosphorylation of Akt. These findings suggest that combination therapy including cetuximab and trastuzumab may be a promising strategy to treat SCC.