Oncology reports
-
Cancer cells can escape antitumor immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint therapy, mainly including anti‑CTLA‑4 therapy and anti‑PD‑1/PD‑L1 therapy, can enhance antitumor immune responses by blocking the inhibitory signals of the immune system. ⋯ Here, we review immune checkpoint inhibitors that prevent tumor immune escape and recent clinical studies of immune checkpoint therapy. We also compare the efficacy of different combination immunotherapies, describe how the relationship between the gut microbiome and immune system can determine the therapeutic outcomes for immune checkpoint inhibitors and introduce several novel immune checkpoints that are potential targets for antitumor immunotherapy in the future.
-
miRNA‑gene axes have been reported to serve an important role in the carcinogenesis of pancreatic cancer (PC). The aim of the present study was to systematically identity the microRNA signature and hub molecules, as well as hub miRNA‑gene axes, and to explore the potential biomarkers and mechanisms associated with the carcinogenesis of PC. Eleven microRNA profile datasets were obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) and ArrayExpress databases, and a meta‑analysis was performed to identify the differentially expressed miRNAs (DEMs) between tumor tissue and normal tissue. ⋯ In addition, 44 miRNA‑mRNA interactions were constructed, and 4 hub genes were screened on the basis of the above bioinformatic tools and databases. Furthermore, 14 biological process (BP) functions and 6 KEGG pathways were identified according to gene set enrichment analysis (GSEA). In summary, the present study applied integrated bioinformatics approaches to generate a holistic view of PC, thereby providing a basis for further clinical application of the 5‑miRNA signature and the identified hub molecules, as well as the miRNA‑gene axes, which could serve as diagnostic markers and potential treatment targets.
-
Colorectal cancer (CRC) is one of the principal causes of cancer‑associated mortality worldwide. The high incidence of liver metastasis is the leading risk factor of mortality in patients with CRC, and the mechanisms of CRC liver metastasis are poorly understood. In the present study, 7 datasets, including 3 gene expression profile datasets and 4 microRNA (miRNA) expression profile datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) database to identify potential key genes and miRNAs, which may be candidate biomarkers for CRC liver metastasis. ⋯ A total of 20 DEGs were identified to be potential target genes of these DE miRNAs, and novel miRNA‑DEGs regulatory axes were constructed. In vitro experiments were performed to demonstrate that miR‑885 promoted CRC cell migration by, at least partially, decreasing the expression of von Willebrand factor (vWF) and insulin‑like growth factor binding protein 5 (IGFBP5). In conclusion, by using integrated bioinformatics analysis and in vitro experiments, key candidate genes were identified and novel miRNA‑mRNA regulatory axes in CRC liver metastasis were constructed, which may improve understanding of the molecular mechanisms underlying CRC liver metastasis.