Oncology reports
-
Recent studies have identified myeloid-derived suppressor cells (MDSCs) that are potent suppressors of tumor immunity and therefore a significant impediment to cancer immunotherapy. It has been reported that MDSCs are generated by malignant diseases or inflammation. However, no systematic studies in patients have been described. ⋯ In patients with breast cancer, MDSC levels in preoperative patients was significantly increased compared to normal volunteers and significantly decreased in postoperative patients. Thus, it is clear that MDSCs are increased in patients with cancer and closely related to suppression of cell-mediated immune responses. These data also suggest that they are related to chronic inflammation and that their levels are increased further in the terminal stages of patients whose nutritional status is impaired as observed in hypoproteinemia. MDSC levels have also been shown to decrease after removal of tumors in patients with breast cancer.
-
In the present study, we investigated the role of UHRF1 (ubiquitin-like protein containing PHD and RING finger domains 1) in proliferation, invasion and migration of breast cancer cells, and the potential mechanisms were also explored. Cell proliferation was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; cell cycle distribution and apoptosis were evaluated using flow cytometry; protein expression was determined by western blotting; angiogenesis of xenografts was assessed by microvessel density (MVD); cell invasion was measured using transwell chamber; cell migration was determined by wound scratching assay. Our results demonstrated that UHRF1 transfection conferred serum independence to MDA-MB-231 cells, G1 phase shortage and apoptosis suppression, accompanied with an increased expression of cyclin D1 and decreased expression of Bax. ⋯ UHRF1 induced growth of MDA-MB-231 cells by promoting tumor vessel formation in vivo. In conclusion, UHRF1 promoted the proliferation of breast cancer cells by apoptosis inhibition, G1 phase shortage and promotion of tumor vessel formation, and pro-invasion and pro-migration activity was also observed by interacting with PTEN and maspin. Thus, UHRF1 may serve as a new therapy target for breast cancer.
-
The ERBB proteins are cell membrane tyrosine kinase receptors. Among these receptors, ERBB1 (EGFR or HER1) and ERBB2 (HER2/Neu) have been reported to be the most important in terms of the development and progression of squamous cell carcinoma of the esophagus (SCC). Thus, targeting of ERBB1 and ERBB2 may become a promising strategy to treat SCC. ⋯ In conclusion, combination of cetuximab and trastuzumab revealed a synergistic antitumor effect for SCC in vitro and in vivo. The antitumor effect may be induced by the inhibition of the phosphorylation of Akt. These findings suggest that combination therapy including cetuximab and trastuzumab may be a promising strategy to treat SCC.
-
Genetic differences in individuals with regard to opioid-receptor signaling create clinical difficulties for opioid treatment; consequently, useful pharmacodynamic and predictive biomarkers are needed. In this prospective study, we studied gene expression changes in peripheral blood leukocytes using a microarray and real-time RT-PCR analysis to identify pharmacodynamic biomarkers for monitoring the effect of morphine in a cohort of opioid-treatment-naïve cancer patients. We also examined genetic variations in opioid receptor mu 1 (OPRM1, 118A→G) and catechol-O-methyltransferase (COMT, 472G→A) to evaluate predictive biomarkers of the treatment outcome of morphine. ⋯ No correlation was observed between the genotype of OPRM1 and morphine treatment; however, the plasma concentration of morphine and the required dose of morphine were significantly lower for the A/A genotype of COMT (vs. A/G+G/G, P=0.008 and 0.03). We found that changes in the expression of ARRB1 may be a novel pharmacodynamic biomarker and the COMT 472G→A genotype may be a predictive biomarker of the response to morphine treatment.
-
The aim of the present study was to evaluate the therapeutic effects and adverse reactions of Tarceva treatment for malignant pleural effusion (MPE) caused by metastatic lung adenocarcinomas. One hundred and twenty-eight patients who failed first-line chemotherapy drug treatment were divided into a mutation and a non-mutation group according to the presence or absence of epidermal growth factor receptor (EGFR) mutations. Each patient received closed drainage combined with simple negative pressure suction after thoracoscopic talc poudrage pleurodesis and oral Tarceva treatment. ⋯ There was a longer overall survival time after Tarceva treatment in patients with EGFR mutations than those without EGFR mutation. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy. Detection of EGFR mutations may determine the responsiveness of malignant pleural effusion to Tarceva treatment.