Free radical research
-
Free radical research · Oct 2015
Melatonin protects hepatocytes against bile acid-induced mitochondrial oxidative stress via the AMPK-SIRT3-SOD2 pathway.
Mitochondrial oxidative damage is hypothesized to contribute to the pathogenesis of chronic cholestatic liver diseases. Melatonin, an indolamine synthesized in the pineal gland, shows a wide range of physiological functions, and is under clinical investigation for expanded applications. Melatonin has demonstrated efficient protective effects against various types of oxidative damage in the liver system. ⋯ Importantly, melatonin-activated SIRT3 activity was completely abolished by AMP-activated, alpha 1 catalytic subunit (AMPK) siRNA transfection. Similar results were obtained in rat with bile duct ligation or BDL. In summary, our findings indicate that melatonin is a novel hepatoprotective small molecule that functions by elevating SIRT3, stimulating SOD2 activity, and suppressing mitochondrial oxidative stress at least through AMPK, and that SIRT3 may be of therapeutic value in liver cell protection for GCDCA-induced hepatotoxicity.