Biochemistry
-
Covalent DNA adducts of the antitumor antibiotic CC-1065 and its analogues undergo a retrohomologous Michael reaction in aqueous/organic solvent mixtures to regenerate the initial cyclopropylpyrroloindole (CPI) structure and, presumably, intact DNA. This reaction, which at higher temperatures competes with depurination of the N3-alkylated adenine, also occurs to a significant extent at 37 degrees C in neutral aqueous solution. Tritium-labeled adozelesin, covalently bonded to a 3-kilobase DNA restriction fragment which was exhaustively extracted to remove unbonded drug, was efficiently transferred to a 1-kilobase fragment upon coincubation for 20 h at 37 degrees C in aqueous buffer. Covalent adducts of adozelesin, but not CC-1065, on calf thymus DNA were cytotoxic to L1210 cells after incubation for 3 days at 37 degrees C, indicating that reversal of DNA alkylation can mediate potent cellular effects for simplified CC-1065 analogues.