Biochemistry
-
In this study, we have mapped the intracellular alkylation sites of adozelesin and bizelesin, two potent analogs of CC-1065, in individual genes at the single-nucleotide level. Human colon carcinoma cells were treated with adozelesin and bizelesin, and the position of adducts were mapped within the PGK-1 and p53 genes by means of ligation-mediated polymerase chain reaction. The monofunctional alkylating agent adozelesin was found to alkylate genomic DNA predominantly within 5'-(A/T)(A/T)A* sequences. ⋯ Both six- and seven-nucleotide regions were identified as putative sites of DNA interstrand cross-link formation with 5'-TTTTTTA*, 5'-TTTATCA* and 5'-GTACTAA* sequences being preferred. Non-adenine bases are not observed as potential intracellular sites of either DNA interstrand cross-linking formation or monofunctional alkylation. Thus, the patterns of alkylation induced by adozelesin and bizelesin in genomic DNA are similar but not identical to that observed in purified cell-free DNA.