Biochemistry
-
Progressive cerebral deposition of the amyloid beta-protein (Abeta) is believed to play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The highly amyloidogenic 42-residue form of Abeta (Abeta42) is the first species to be deposited in both sporadic and familial AD. Mutations in two familial AD-linked genes, presenilins 1 (PS1) and 2 (PS2), selectively increase the production of Abeta42 in cultured cells and the brains of transgenic mice, and gene deletion of PS1 shows that it is required for normal gamma-secretase cleavage of the beta-amyloid precursor protein (APP) to generate Abeta. ⋯ When the same fractions were analyzed by enzyme-linked immunosorbent assays for Abetatotal and Abeta42, Abeta42 was the major Abeta species in the ER fraction (Abeta42:Abetatotal ratio 0.5-1.0), whereas absolute levels of both Abeta42 and Abeta40 were higher in the Golgi fraction and the Abeta42:Abetatoal ratio was 0.05-0.16 there. Mutant PS1 significantly increased Abeta42 levels in the Golgi fraction. Our results indicate PS1 and APP can interact in the ER and Golgi, where PS1 is required for proper gamma-secretase processing of APP CTFs, and that PS1 mutations augment Abeta42 levels principally in Golgi-like vesicles.
-
The interactions of simian virus 40 (SV40) large T antigen with DNA carrying the viral origin of DNA replication, as well as its interactions with cellular replication proteins, have been investigated by using fluorescent ATP analogues as specific probes. The enhanced fluorescence of 3'(2')-O-(2,4, 6-trinitrophenyl)adenosine diphosphate (TNP-ADP) induced by T antigen binding to the nucleotide was decreased upon binding of T antigen to origin DNA. Similarly, the enhanced fluorescence induced by T antigen binding to TNP-ADP or TNP-ATP was decreased upon binding to human DNA polymerase alpha-primase (pol alpha), but not to replication protein A (RPA). ⋯ The results support a model in which double hexamer assembly on the viral origin occurs by successive binding of 12 free T antigen or monomeric T-nucleotide complexes to the DNA. In contrast with this stepwise assembly of T antigen monomers on DNA, hexameric T antigen was able to bind directly to pol alpha with concomitant release of the bound TNP nucleotide. The possible implications of these results for the mechanism of initiation of SV40 DNA replication are discussed.