Biochemistry
-
The human oxytocin receptor is known to exhibit promiscuous activity by coupling to both Galpha(q) and Galpha(i) G proteins to activate distinct signaling pathways. A single-amino acid substitution within the highly conserved E/DRY motif at the cytosolic extension of helix 3 [i.e., D136(3.49)N] increased the rate of both basal and agonist-stimulated inositol phosphate (IP(3)) accumulation of the receptor. Furthermore, like for a typical constitutively active receptor, the partial agonist arginine vasopressin behaved as a full agonist for the D136(3.49)N mutant. ⋯ Furthermore, computational modeling suggests that the OT-bound form of wild-type OTR is able to explore more states than the OT-bound form of the D136(3.49)N constitutively active mutant, consistent with its G protein promiscuity. Taken together, these observations emphasize the important role of the E/DRY motif not only in receptor activation but also in the promiscuity of G protein coupling. Knowledge of the mechanism of selective G protein coupling could aid drug discovery efforts to identify signaling specific therapies.
-
Comparative Study
Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition.
Viral proteases are essential for pathogenesis and virulence of severe acute respiratory syndrome coronavirus (SARS-CoV). Little information is available on SARS-CoV papain-like protease 2 (PLP2), and development of inhibitors against PLP2 is attractive for antiviral therapy. Here, we report the characterization of SARS-CoV PLP2 (from residues 1414 to 1858) purified from baculovirus-infected insect cells. ⋯ With a fluorogenic inhibitor-screening platform, we show that zinc ion and its conjugates potently inhibit the enzymatic activity of SARS-CoV PLP2. In addition, we provided evidence for evolutionary reclassification of SARS-CoV. The results provide important insights into the biochemical properties of the coronaviral PLP family and a promising therapeutic way to fight SARS-CoV.