Expert opinion on investigational drugs
-
Expert Opin Investig Drugs · Apr 2014
ReviewARA 290 for treatment of small fiber neuropathy in sarcoidosis.
Painful peripheral neuropathy is a common, difficult-to-treat complication associated with a variety of diseases, including diabetes mellitus and sarcoidosis. It is caused by damage of small and autonomic nerve fibers, resulting in potentially debilitating symptoms of neuropathic pain and autonomic dysfunction. The limited efficacy of current treatment options dictates a rationalized design of novel compounds. ⋯ Current treatment modalities of neuropathy are based on a trial-and-error approach, have limited efficacy and come with significant side effects. Given the excellent safety profile while reducing neuropathy symptoms, the prospects of ARA 290 treatment in sarcoid neuropathy seem promising. The long-lasting beneficial effects of ARA 290 on both pain-related and non-pain-related symptoms in sarcoidosis patients prompt additional studies on potential disease-modifying properties of ARA 290.
-
Multiple myeloma (MM) remains incurable despite important recent advances in treatment due to its inherent resistance, characterized by highly complex and heterogeneous molecular abnormalities, as well as the support from myeloma bone marrow (BM) microenvironment. A novel therapeutic strategy that effectively targets specific molecules on myeloma cells and also potentially overcomes tumor microenvironment-mediated drug resistance and the downstream effects of genetic instability is thus urgently needed. Over the last 2 years, an anti-CD38 monoclonal antibody daratumumab (DARA) has emerged as a breakthrough targeted therapy for patients with MM. ⋯ DARA may, therefore, be the first mAb with significant anti-MM activity both as a monotherapy and in combination. It is currently being further evaluated both alone and in combination with conventional and novel anti-MM agents as part of prospective clinical trials. This review discusses the preclinical and clinical development of DARA, its pathophysiological basis, and its prospects for future use in MM.