Expert opinion on investigational drugs
-
Expert Opin Investig Drugs · Jun 2015
ReviewInvestigational agents for treatment of traumatic brain injury.
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. ⋯ TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
-
Expert Opin Investig Drugs · Jun 2015
ReviewCebranopadol : a first-in-class potent analgesic agent with agonistic activity at nociceptin/orphanin FQ and opioid receptors.
Pain is a syndrome of various clinical disorders, which arises from various pathological conditions and which presents significant challenges in both its diagnosis and treatment. There is currently a strong medical demand to develop new therapies with a higher efficacy and a better tolerability profile. ⋯ Cebranopadol displays analgesic, antiallodynic and antihyperalgesic properties in several rat models of acute nociceptive, inflammatory, cancer and neuropathic pain. In contrast to classical opioids, it has a higher analgesic potency in models of neuropathic pain than in acute nociceptive pain. Even at higher analgesic doses, cebranopadol does not induce motor coordination deficits or respiratory depression in rats. Hence, it seems to possess a broader therapeutic window than classical opioids. While it is particularly interesting as a novel, potent bifunctional agonist of NOP/opioid receptors, the outcome of its ongoing and planned clinical trials will be crucial for its future development and potential application in humans.