Microcirculation : the official journal of the Microcirculatory Society, Inc
-
New strategies for cancer therapy include the combination of angiogenesis inhibitors with cytotoxins. However, angiogenesis inhibitors may alter tumor microvessel structure and transendothelial permeability thereby reducing tumoral delivery of cytotoxic agents. The aim of this study was to estimate quantitatively the apparent permeability-surface area product (K(PS)) in tumors to a macromolecular contrast medium (MMCM), to follow changes in K(PS) induced by antibodies to vascular endothelial growth factor (anti-VEGF), and to correlate the findings with tumor accumulation of cisplatin, a highly protein-bound cytotoxin, and 5-fluorouracil (5-FU), a small unbound cytotoxin. ⋯ MMCM-enhanced MRI can be used to detect and estimate changes in K(PS) to this contrast agent following a single dose of anti-VEGF antibody. The decline in K(PS) induced by this inhibitor of angiogenesis is associated with reduced tumor concentration of a protein-bound cytotoxin, similar in molecular weight to the contrast agent. MRI assays of microvascular status as performed here may be useful to clinically monitor responses to anti-angiogenesis drugs and to optimize the choice and timing of cytotoxic drug administration.