Microcirculation : the official journal of the Microcirculatory Society, Inc
-
The potential for a rapid increase in severity is among the most frightening aspects of severe acute respiratory syndrome coronavirus 2 infection. Evidence increasingly suggests that the symptoms of coronavirus disease-2019 (COVID-19)-related acute respiratory distress syndrome (ARDS) differ from those of classic ARDS. Recently, the severity of COVID-19 has been attributed to a systemic, thrombotic, and inflammatory disease that damages not only the lungs but also multiple organs, including the heart, brain, toes, and liver. ⋯ The endothelial glycocalyx is very thin in the pulmonary capillaries, where it is affected by gaseous exchange with the alveoli and the low intravascular pressure in the pulmonary circulation. Despite the clearly important roles of the glycocalyx in vascular endothelial injury, thrombosis, vasculitis, and inflammation, the link between this structure and vascular endothelial cell dysfunction in COVID-19 remains unclear. In this prospective review, we summarize the importance of the glycocalyx and its potential as a therapeutic target in cases of systemic COVID-19.
-
Microcirculatory perfusion disturbances following hemorrhagic shock and fluid resuscitation contribute to multiple organ dysfunction and mortality. Standard fluid resuscitation is insufficient to restore microcirculatory perfusion; however, additional therapies are lacking. We conducted a systematic search to provide an overview of potential non-fluid-based therapeutic interventions to restore microcirculatory perfusion following hemorrhagic shock. ⋯ Improving mitochondrial function, inhibition of complement inhibition, and reducing microvascular leakage via restoration of endothelial barrier function seem beneficial to restore microcirculatory perfusion following hemorrhagic shock and fluid resuscitation.
-
Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen, which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. ⋯ Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand, and their regulation are decided.
-
For more than two decades, methods for the non-invasive exploration of cutaneous microcirculation have been mainly based on optical microscopy and laser Doppler techniques. In this review, we discuss the advantages and drawbacks of these techniques. Although optical microscopy-derived techniques, such as nailfold videocapillaroscopy, have found clinical applications, they mainly provide morphological information about the microvessels. ⋯ Acetylcholine and sodium nitroprusside iontophoresis, despite their wide use as specific tests of endothelium-dependent and -independent function, respectively, show limitations. The influence of the skin site, recording conditions, and the way of expressing data are also reviewed. Finally, we focus on promising tools such as laser speckle contrast imaging.
-
Oxygen and other substrates, waste products, hormone messengers, and cells and other particles of the immune system are all transported in a closed-loop circulatory system in vertebrates, within which pumped blood travels to within diffusion distances of practically every cell in the body. Exchange of oxygen and carbon dioxide in the pulmonary capillaries and absorption of nutrients in the gut provide the circulating blood with biochemical reactants to sustain bioenergetic processes throughout the body. ⋯ Indeed, the microcirculation is the key system that ties processes at the whole-body level of the cardiovascular system to subcellular phenomena. This tight integration between cellular metabolism and microcirculatory transport begs for integrative simulations that span the cell, tissue, and organ scales.