Biophysical journal
-
Biophysical journal · Aug 2010
Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms.
ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+](m)) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+](m) is affected by H2PO4(-) (P(i)), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+](m), membrane potential, redox state, matrix volume, pH(m), and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside, or oligomycin, and at several levels of Mg2+ and P(i). ⋯ Carboxyatractyloside prevented the ADP-induced [Ca2+](m) increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state 4 respiration at 485 nM [Ca2+](e). These data suggest that matrix ADP influx and subsequent phosphorylation increase [Ca2+](m) largely due to the interaction of matrix Ca2+ with ATP, ADP, P(i), and cation buffering proteins in the matrix.