Biophysical journal
-
Pentameric ligand-gated ion channels are targets of general anesthetics. Although the search for discrete anesthetic binding sites has achieved some degree of success, little is known regarding how anesthetics work after the events of binding. Using the crystal structures of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), which is sensitive to a variety of general anesthetics, we performed multiple molecular dynamics simulations in the presence and absence of the general anesthetic isoflurane. ⋯ The pore-lining helix experienced lateral and inward radial tilting motion that contributed to the channel closure. Isoflurane binding introduced strong anticorrelated motions between different subunits of GLIC. The demonstrated structural and dynamical modulations by isoflurane aid in the understanding of the underlying mechanism of anesthetic inhibition of GLIC and possibly other homologous pentameric ligand-gated ion channels.