Journal of computational neuroscience
-
The influences of stimulation frequency and temperature on mechanisms of nerve conduction block induced by high-frequency biphasic electrical current were investigated using a lumped circuit model of the myelinated axon based on Schwarz and Eikhof (SE) equations. The simulation analysis showed that a temperature-frequency relationship was determined by the axonal membrane dynamics (i.e. how fast the ion channels can open or close.). ⋯ The simulation results also indicated that as the stimulation frequency increased the mechanism of conduction block changed from a cathodal/anodal block to a block dependent upon continuous activation of potassium channels. Understanding the interaction between the minimal blocking frequency and temperature could promote a better understanding of the mechanisms of high frequency induced axonal conduction block and the clinical application of this method for blocking nerve conduction.