International journal of urology : official journal of the Japanese Urological Association
-
Although the pathogenesis of interstitial cystitis/bladder pain syndrome remains unknown, there is a significant correlation of interstitial cystitis/bladder pain syndrome with other chronic pain disorders, such as irritable bowel syndrome, endometriosis and fibromyalgia syndrome. In this review, we highlight evidence supporting neural cross-talk in the dorsal root ganglia, spinal cord and brain levels, which might play a role in the development of chronic pain disorders through central sensitization. In addition, we focus on transient receptor potential V1 and transient receptor potential A1 as the receptor targets for chronic pain conditions, because transient receptor potential V1 and transient receptor potential A1 act as a nocisensor to mediate not only an afferent signal to the dorsal horn of the spinal cord, but also an efferent signal in the periphery through secretion of inflammatory agents, such as substance P and calcitonin gene-related peptide in nociceptive sensory neurons. ⋯ During tissue damage and inflammation, oxidative stress, such as reactive oxygen species or reactive carbonyl species is also generated endogenously. The highly diffusible nature might account for the actions of free radical formation far from the site of injury, thereby producing systemic pain conditions without central sensitization through neural cross-talk. Because oxidative stress is considered to induce activation of transient receptor potential A1, we also discuss exogenous and endogenous oxidative stress to elucidate its role in the pathogenesis of interstitial cystitis/bladder pain syndrome and other chronic pain conditions.