Neurobiology of disease
-
Neurobiology of disease · Feb 2005
Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy.
Small-diameter sensory nerves innervating the skin are responsive to noxious stimuli, and an injury to these nerves is presumably related to neuropathic pain. Injury-induced neuropathic pain in animals can be produced by laser irradiation, which usually requires concomitant use of photosensitive dyes, known as the photochemical approach. It is not clear whether laser irradiation alone can induce neuropathic pain. ⋯ Results suggest that laser-induced focal neuropathy provides a new system for studying neuropathic pain. With this approach, the extent of nerve injury can be quantified. Both small-diameter epidermal nerves and large-diameter sensory and motor nerves are susceptible to laser-induced injury of different degrees.
-
Neurobiology of disease · Feb 2005
NGF stimulates extensive neurite outgrowth from implanted dorsal root ganglion neurons following transplantation into the adult rat inner ear.
Neuronal tissue transplantation is a potential way to replace degenerated spiral ganglion neurons (SGNs) since these cells cannot regenerate in adult mammals. To investigate whether nerve growth factor (NGF) can stimulate neurite outgrowth from implanted neurons, mouse embryonic dorsal root ganglion (DRG) cells expressing enhanced green fluorescent protein (EGFP) were transplanted into the scala tympani of adult rats with a supplement of NGF or artificial perilymph. DRG neurons were observed in the cochlea for up to 6 weeks postoperatively. ⋯ In the NGF group, extensive neurite projections from DRGs were found penetrating the osseous modiolus towards the spiral ganglion. These results suggest the possibility that embryonic neuronal implants may become integrated within the adult auditory nervous system. In combination with a cochlear prosthesis, a neuronal implantation strategy may provide a possibility for further treatment of profoundly deaf patients.