Neurobiology of disease
-
Neurobiology of disease · Apr 2007
Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in cognitive function associated with the neuropathological hallmarks amyloid beta-peptide (Abeta) plaques and neurofibrillary tangles. Because aging is the major risk factor for AD, and dietary energy restriction can retard aging processes in the brain, we tested the hypothesis that two different energy restriction regimens, 40% calorie restriction (CR) and intermittent fasting (IF) can protect against cognitive decline in the triple-transgenic mouse model of AD (3xTgAD mice). Groups of 3xTgAD mice were maintained on an ad libitum control diet, or CR or IF diets, beginning at 3 months of age. ⋯ In 17-month-old 3xTgAD mice the CR and IF groups exhibited higher levels of exploratory behavior, and performed better in both the goal latency and probe trials of the swim task, compared to 3xTgAD mice on the control diet. 3xTgAD mice in the CR group showed lower levels of Abeta1-40, Abeta1-42 and phospho-tau in the hippocampus compared to the control diet group, whereas Abeta and phospho-tau levels were not decreased in 3xTgAD mice in the IF group. IF may therefore protect neurons against adverse effects of Abeta and tau pathologies on synaptic function. We conclude that CR and IF dietary regimens can ameliorate age-related deficits in cognitive function by mechanisms that may or may not be related to Abeta and tau pathologies.