Neurobiology of disease
-
Neurobiology of disease · Jan 2010
Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus.
It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD), but a mechanistic connection between both pathologies has not been provided so far. Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. ⋯ ADD brains showed increased number of Abeta dense plaques and receptor for AGEs (RAGE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.
-
Neurobiology of disease · Jan 2010
1-(2',4'-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide, a novel CB2 agonist, alleviates neuropathic pain through functional microglial changes in mice.
Neuropathic pain is a devastating neurological disease that seriously affects quality of life in patients. The mechanisms leading to the development and maintenance of neuropathic pain are still poorly understood. However, recent evidence points towards a role of spinal microglia in the modulation of neuronal mechanisms. ⋯ Treatment with NESS400 significantly reduced the number of hypertrophic microglia while leaving microglial cell number unaffected and reduced astrogliosis. Moreover, prolonged administration of NESS400 reduced mRNA expression of pro-inflammatory markers and enhanced anti-inflammatory marker gene expression in dorsal horn extracts. In conclusion, we show that selective CB2 receptor stimulation prevents thermal hyperalgesia, alleviates mechanical allodynia and facilitates the proliferation of anti-inflammatory microglial phenotype in the ipsilateral dorsal horn of the spinal cord in SNI mice.