Neurobiology of disease
-
Neurobiology of disease · Jan 2013
Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: implications for epileptogenesis.
Hippocampal sclerosis, the main pathological sign of chronic temporal lobe epilepsy (TLE), is associated with oxidative injury, altered N-methyl d-aspartate receptor (NMDAR) stoichiometry, and loss of hippocampal neurons. However, the mechanisms that drive the chronic progression of TLE remain elusive. Our previous studies have shown that NADPH oxidase activation and ERK 1/2 phosphorylation are required for the up-regulation of the predominantly pre-synaptic NR2B subunit auto-receptor in both in vitro and in vivo pilocarpine (PILO) models of TLE. ⋯ However, if acutely administered 48h after PILO exposure, ifenprodil blocked glutamate-induced aberrant calcium influx, suggesting the crucial role of NR2B over-expression in triggering neuronal hyper-excitability. Furthermore, ifenprodil treatment was able to prevent NR2A subunit over-expression by means of ERK1/2 phosphorylation. Our findings indicate oxidative stress and NR2B/NMDA signaling as promising therapeutic targets for co-treatments aimed to prevent chronic epilepsy following the seizure onset.
-
Neurobiology of disease · Jan 2013
Limited regional cerebellar dysfunction induces focal dystonia in mice.
Dystonia is a complex neurological syndrome broadly characterized by involuntary twisting movements and abnormal postures. The anatomical distribution of the motor symptoms varies among dystonic patients and can range from focal, involving an isolated part of the body, to generalized, involving many body parts. Functional imaging studies of both focal and generalized dystonias in humans often implicate the cerebellum suggesting that similar pathological processes may underlie both. ⋯ Dysfunction of the entire cerebellum caused abnormal postures of many body parts, resembling generalized dystonia. More limited regions of dysfunction that were created by electrical stimulation or conditional genetic manipulations produced abnormal movements in an isolated body part, resembling focal dystonia. Overall, these results suggest that focal and generalized dystonias may arise through similar mechanisms and therefore may be approached with similar therapeutic strategies.