Neurobiology of disease
-
Neurobiology of disease · Apr 2014
High beta activity in the subthalamic nucleus and freezing of gait in Parkinson's disease.
Oscillatory activity in the beta band is increased in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients. Rigidity and bradykinesia are associated with the low-beta component (13-20Hz) but the neurophysiological correlate of freezing of gait in PD has not been ascertained. ⋯ The association between freezing of gait, high-beta STN oscillations and cortico-STN coherence suggests that this oscillatory activity might interfere in the frontal cortex-basal ganglia networks, thereby participating in the pathophysiology of FOG in PD.
-
Neurobiology of disease · Apr 2014
Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: a Fos protein study.
Familial hemiplegic migraine type 1 (FHM-1) is a monogenic subtype of migraine with aura caused by missense mutations in the CACNA1A gene, which encodes the pore-forming α1 subunit of voltage-gated neuronal CaV2.1 (P/Q-type) calcium channels. Transgenic knock-in mice expressing the CACNA1A R192Q mutation that causes FHM-1 in patients show a greater susceptibility to cortical spreading depression, the likely underlying mechanism of typical human migraine aura. The aim of this study was to compare neuronal activation within the trigeminal pain pathways in response to nociceptive trigeminovascular stimulation in wild-type and R192Q knock-in mice. ⋯ The number of Fos-positive cells in the R192Q stimulated group was significantly lower compared to the wild-type stimulated mice (P<0.05). In the thalamus, R192Q mice tended to be more sensitive to stimulation compared to the sham control in the medial and posterior nuclei, and between the two strains of stimulated animals there was a significant difference in the centromedian (P<0.005), and posterior nuclei (P<0.05). The present study suggests that the FHM-1 mutation affects more rostral brain structures in this experimental paradigm, which offers a novel perspective on possible differential effects of mutations causing migraine in terms of phenotype-genotype correlations.
-
Neurobiology of disease · Apr 2014
Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds.
In the injured central nervous system (CNS), transforming growth factor (TGF)-β1/2-induced scarring and wound cavitation impede axon regeneration implying that a combination of both scar suppression and axogenic treatments is required to achieve functional recovery. After treating acute and chronic dorsal funicular spinal cord lesions (DFL) in adult rats with the pan-TGF-β1/2 antagonist Decorin, we report that in: (1), acute DFL, the development of all injury parameters was significantly retarded e.g., wound cavity area by 68%, encapsulation of the wound by a glia limitans accessoria (GLA) by 65%, GLA basal lamina thickness by 94%, fibronectin, NG2 and Sema-3A deposition by 87%, 48% and 48%, respectively, and both macrophage and reactive microglia accumulations by 60%; and (2), chronic DFL, all the above parameters were attenuated to a lesser extent e.g., wound cavity area by 11%, GLA encapsulation by 25%, GLA basal lamina thickness by 31%, extracellular fibronectin, NG2 and Sema-3A deposition by 58%, 22% and 29%, respectively, and macrophage and reactive microglia accumulations by 44%. ⋯ Decorin also promoted the regeneration of similar numbers of axons through acute and chronic wounds. Accordingly, intrathecal delivery of Decorin offers a potential translatable treatment for scar tissue attenuation in patients with spinal cord injury.
-
Neurobiology of disease · Apr 2014
Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. ⋯ SOD1(G93A)Grm1(crv4/+) mice showed prolonged survival probability, delayed pathology onset, slower disease progression and improved motor performances compared to SOD1(G93A) mice. These effects were associated to reduction of mGluR5 expression, enhanced number of MNs, decreased astrocyte and microglia activation, normalization of metallothionein and catalase mRNA expression, reduced mitochondrial damage, and decrease of abnormal Glu release in spinal cord of SOD1(G93A)Grm1(crv4/+)compared to SOD1(G93A) mice. These results demonstrate that a lower constitutive level of mGluR1 has a significant positive impact on mice with experimental ALS, thus providing the rationale for future pharmacological approaches to ALS by selectively blocking Group I metabotropic Glu receptors.