Neurobiology of disease
-
Neurobiology of disease · Oct 2015
GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis.
Temporal lobe epilepsy (TLE) is the most prevalent form of adult focal onset epilepsy often associated with drug-resistant seizures. Numerous studies suggest that neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy. In particular, the interleukin (IL)-1β/IL-1 receptor type 1 (R1) axis is activated in epileptogenic tissue, where it contributes significantly to the generation and recurrence of seizures in animal models. ⋯ In TLE specimens from humans, the IL-1β effect was mediated by IL-1R1 and PKC. We also showed that IL-1R1 and IRAK1, the proximal kinase mediating the IL-1R1 signaling, are both up-regulated in the TLE compared with control specimens, thus supporting the idea that the IL-1β/IL-R1 axis is activated in human epilepsy. Our findings suggest a novel mechanism possibly underlying the ictogenic action of IL-1β, thus suggesting that this cytokine contributes to seizure generation in human TLE by reducing GABA-mediated neurotransmission.
-
Paclitaxel is an integral component of solid tumor treatment. This chemotherapeutic agent provokes an often irreversible peripheral sensory neuropathy with pathological features of distal axonal degeneration. Current pathological concepts assume that polymerization of axonal microtubules and mitochondrial dysfunction contributes to the development of paclitaxel-induced peripheral neuropathy. ⋯ These changes were caused by decreased levels of nuclear encoded mRNA, including the mitochondrial fusion/fission machinery. Moreover, impaired axonal mRNA transport in vitro resulted in mitochondrial dysfunction and subsequent axonal degeneration. Taken together, our experiments provide evidence that disrupted axonal transport of nuclear derived mRNA plays a crucial role in the pathogenesis of paclitaxel-induced sensory neuropathy.
-
Neurobiology of disease · Oct 2015
Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration.
Previous studies demonstrate that intrastriatal injections of fibrillar alpha-synuclein (α-syn) into mice induce Parkinson's disease (PD)-like Lewy body (LB) pathology formed by aggregated α-syn in anatomically interconnected regions and significant nigrostriatal degeneration. The aim of the current study was to evaluate whether exogenous mouse α-syn pre-formed fibrils (PFF) injected into the striatum of rats would result in accumulation of LB-like intracellular inclusions and nigrostriatal degeneration. Sprague-Dawley rats received unilateral intrastriatal injections of either non-fibrillized recombinant α-syn or PFF mouse α-syn in 1- or 2- sites and were euthanized at 30, 60 or 180 days post-injection (pi). ⋯ PFF injected rats exhibited bilateral reductions in striatal dopaminergic innervation at 60 and 180 days and bilateral decreases in homovanillic acid; however, dopamine reduction was observed only in the striatum ipsilateral to PFF injection. Although the level of dopamine asymmetry in PFF injected rats at 180 days was insufficient to elicit motor deficits in amphetamine-induced rotations or forelimb use in the cylinder task, significant disruption of ultrasonic vocalizations was observed. Taken together, our findings demonstrate that α-syn PFF are sufficient to seed the pathological conversion and propagation of endogenous α-syn to induce a progressive, neurodegenerative model of α-synucleinopathy in rats.
-
Neurobiology of disease · Oct 2015
Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of Rapid Onset Dystonia-Parkinsonism.
Loss-of-function mutations in the α3 isoform of the sodium pump are responsible for Rapid Onset Dystonia-Parkinsonism (RDP). A pharmacologic model of RDP replicates the most salient features of RDP, and implicates both the cerebellum and basal ganglia in the disorder; dystonia is associated with aberrant cerebellar output, and the parkinsonism-like features are attributable to the basal ganglia. The pharmacologic agent used to generate the model, ouabain, is selective for sodium pumps. ⋯ Knockdown of the α3-containing sodium pumps mimicked both the behavioral and electrophysiological changes seen in the pharmacologic model of RDP, recapitulating key aspects of the human disorder. Further, we found that knockdown of the α3 isoform altered the intrinsic pacemaking of Purkinje cells, but not the neurons of the deep cerebellar nuclei. Therefore, acute knockdown of proteins associated with inherited dystonias may be a good strategy for developing phenotypic genetic mouse models where traditional transgenic models have failed to produce symptomatic mice.