Neurobiology of disease
-
Neurobiology of disease · Apr 2015
Enhanced histamine H2 excitation of striatal cholinergic interneurons in L-DOPA-induced dyskinesia.
Levodopa is the most effective therapy for the motor deficits of Parkinson's disease (PD), but long term treatment leads to the development of L-DOPA-induced dyskinesia (LID). Our previous studies indicate enhanced excitability of striatal cholinergic interneurons (ChIs) in mice expressing LID and reduction of LID when ChIs are selectively ablated. Recent gene expression analysis indicates that stimulatory H2 histamine receptors are preferentially expressed on ChIs at high levels in the striatum, and we tested whether a change in H2 receptor function might contribute to the elevated excitability in LID. ⋯ These findings suggest that ChIs undergo a pathological change in LID with respect to histaminergic neurotransmission. The hypercholinergic striatum associated with LID may be dampened by inhibition of H2 histaminergic neurotransmission. This study also provides a proof of principle of utilizing selective gene expression data for cell-type-specific modulation of neuronal activity.