Neurobiology of disease
-
Neurobiology of disease · Feb 2015
Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.
Spinal cord injury (SCI) leads to formation of a fibrotic scar that is inhibitory to axon regeneration. Recent evidence indicates that the fibrotic scar is formed by perivascular fibroblasts, but the mechanism by which they are recruited to the injury site is unknown. ⋯ Cytokine gene expression analysis after macrophage depletion indicates that decreased Tnfsf8, Tnfsf13 (tumor necrosis factor superfamily members) and increased BMP1-7 (bone morphogenetic proteins) expression may serve as anti-fibrotic mechanisms. Our study demonstrates that hematogenous macrophages are necessary for fibrotic scar formation and macrophage depletion results in changes in multiple cytokines that make the injury site less fibrotic and more conducive to axonal growth.
-
To examine the effect of the orexinergic blockade with a dual orexin receptor antagonist (DORA) on experimental models of peripheral and central trigeminal as well as cortical activation relevant to migraine and migraine aura. ⋯ The study provides the first direct evidence, that simultaneous antagonism on both orexin receptors is able to attenuate trigeminal nociceptive activity as well as to induce an elevation of the threshold for the induction of a cortical spreading depression (CSD). In the clinical context, these data imply that targeting the hypothalamic orexinergic system may offer an entirely novel mechanism for the preventive treatment of migraine with and without aura.
-
Neurobiology of disease · Feb 2015
Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability.
Previous studies have established the subventricular (SVZ) and subgranular (SGZ) zones as sites of neurogenesis in the adult forebrain (Doetsch et al., 1999a; Doetsch, 2003a). Work from our laboratory further indicated that midline structures known as circumventricular organs (CVOs) also serve as adult neural stem cell (NSC) niches (Bennett et al., 2009, 2010). In the quiescent rat brain, NSC proliferation remains low in all of these sites. ⋯ Importantly, a common feature of all brain niches was a rich vasculature with a blood-brain-barrier (BBB) that was highly permeable to systemically injected sodium fluorescein. These data indicate that stem cell niches are more extensive than once believed and exist at multiple sites along the entire ventricular system, consistent with the potential for widespread neurogenesis and gliogenesis in the adult brain, particularly after injury. We further suggest that because of their leaky BBB, stem cell niches are well-positioned to respond to systemic injury-related cues which may be important for stem-cell mediated brain repair.
-
Neurobiology of disease · Jan 2015
Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome.
Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. ⋯ Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.
-
Neurobiology of disease · Jan 2015
Dynamic cortical gray matter volume changes after botulinum toxin in cervical dystonia.
Previous electrophysiological and functional imaging studies in focal dystonia have reported on cerebral reorganization after botulinum toxin (BoNT) injections. With the exception of microstructural changes, alterations in gray matter volume after BoNT have not been explored. In this study, we sought to determine whether BoNT influences gray matter volume in a group of cervical dystonia (CD) patients. ⋯ We have identified structural, yet dynamic gray matter volume changes in CD. There were specific gray matter volume changes related to BoNT injections, illustrating indirect central consequences of modified peripheral sensory input. As differences were exclusively seen in higher order motor areas relevant to motor planning and spatial cognition, these observations support the hypothesis that deficits in these cognitive processes are crucial in the pathophysiology of CD.