Molecular medicine
-
Cystic fibrosis (CF) is the most common, lethal autosomal recessive disease affecting children in the United States and Europe. Extensive work is being performed to develop both gene and drug therapies. The principal mutation causing CF is in the CFTR gene ([Delta F508]CFTR). This mutation causes the mutant protein to traffic poorly to the plasma membrane, and degrades CFTR chloride channel activity. CPX, a candidate drug for CF, binds to mutant CFTR and corrects the trafficking deficit. CPX also activates mutant CFTR chloride channel activity. CF airways are phenotypically inundated by inflammatory signals, primarily contributed by sustained secretion of the proinflammatory cytokine interleukin 8 (IL-8) from mutant CFTR airway epithelial cells. IL-8 production is controlled by genes from the TNF-alphaR/NFkappaB pathway, and it is possible that the CF phenotype is due to dysfunction of genes from this pathway. In addition, because drug therapy with CPX and gene therapy with CFTR have the same common endpoint of raising the levels of CFTR, we have hypothesized that either approach should have a common genomic endpoint. ⋯ Wild-type CFTR and CPX both suppress proinflammatory IL-8 secretion from CF epithelial cells. The mechanism, as defined by pharmacogenomic analysis, involves identified genes from the TNF-alphaR/NFkappaB pathway. The close relationship between IL-8 secretion and genes from the TNF-alphaR/NFkappaB pathway suggests that molecular or pharmaceutical targeting of these novel genes may have strategic use in the development of new therapies for CF. From the perspective of global gene expression, both gene and drug therapy have similar genomic consequences. This is the first example showing equivalence of gene and drug therapy in CF, and suggests that a gene therapy-defined endpoint may prove to be a powerful paradigm for CF drug discovery. Finally, because the GENESAVER algorithm is capable of isolating disease-relevant genes in a hypothesis-driven manner without recourse to any a priori knowledge about the system, this new algorithm may also prove useful in applications to other genetic diseases.