Molecular medicine
-
Septic syndromes represent a major although largely underrecognized healthcare problem worldwide, accounting for thousands of deaths every year. It is now agreed that sepsis deeply perturbs immune homeostasis by inducing an initial tremendous systemic inflammatory response which is accompanied by an antiinflammatory process, acting as negative feedback. This compensatory inhibitory response secondly becomes deleterious as nearly all immune functions are compromised. ⋯ Consequently, immunostimulatory therapies may now be assessed for the treatment of sepsis. This review focuses on immune dysfunctions described in septic patients and on their potential use as markers on a routine standardized basis for prediction of adverse outcome or of occurrence of secondary nosocomial infections. This constitutes a prerequisite to a staging system for individualized treatment for these hitherto deadly syndromes.
-
The antithrombotic effect of angiotensin(Ang)-(1-7) has been reported, but the mechanism of this effect is not known. We investigated the participation of platelets and receptor Mas-related mechanisms in this action. We used Western blotting to test for the presence of Mas protein in rat platelets and used fluorescent-labeled FAM-Ang-(1-7) to determine the specific binding for Ang-(1-7) and its displacement by the receptor Mas antagonist A-779 in rat platelets and in Mas(-/ -) and Mas(+/+) mice platelets. ⋯ This study is the first to show the presence of Mas protein and specific binding for Ang-(1-7) in rat and mouse platelets. Our data also suggest that the Ang-(1-7) antithrombotic effect involves Mas-mediated NO release from platelets. More importantly, we showed that the antithrombotic effect of Ang-(1-7) in vivo is Mas dependent and that Mas is functionally important in hemostasis.