Molecular medicine
-
Coagulation is fundamental for the confinement of infection and/or the inflammatory response to a limited area. Under pathological inflammatory conditions such as arthritis, multiple sclerosis or sepsis, an uncontrolled activation of the coagulation system contributes to inflammation, microvascular failure and organ dysfunction. Coagulation is initiated by the activation of thrombin, which, in turn, triggers fibrin formation by the release of fibrinopeptides. ⋯ Bβ15-42 inhibits Rho-kinase activation by dissociating Fyn from Rho and, hence prevents stress-induced loss of endothelial barrier function and also leukocyte migration. This article summarizes the state-of-the-art in inflammatory modulation by fibrin(ogen) and fibrin fragments. However, further research is required to gain better understanding of the entire role fibrin fragments play during inflammation and, possibly, disease development.
-
Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. ⋯ Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.