Molecular medicine
-
Cyclooxygenase-2 (COX-2) is an inducible enzyme involved in the conversion of arachadonic acid to prostaglandins and other eicosaniods. Persistent COX-2 expression is associated with multiple forms of cancer.Therefore, there is much interest in COX-2 specific, non-steroidal anti-inflammatory drug use for cancer chemotherapy. The mechanism by which these drugs inhibit tumor growth and progression is unclear, and our knowledge about their potential to prevent or treat prostate cancer is inadequate. ⋯ These data suggest that COX-2 inhibition induces NF-kappa beta transcription factor activation, which subsequently induces pro-inflammatory protein expression (COX-2 and MIF) and neuroendocrine differentiation in the LNCaP C4-2b subline. These data provide further evidence that pro-inflammatory protein expression may play an important role in prostate cancer progression.
-
The acute respiratory distress syndrome (ARDS) represents a form of severe acute inflammatory lung disease. We have previously demonstrated significantly raised interleukin-8 (IL-8) levels in the lungs of at-risk patients that progress to ARDS, and identified the alveolar macrophage as an important source of this chemokine. We wished to extend this study in a well-defined group of patients with major trauma, and to investigate potential mechanisms for rapid intrapulmonary IL-8 generation. ⋯ Rapidly raised intrapulmonary IL-8 levels are associated with ARDS progression in patients with major trauma. Acute hypoxia, a clinically relevant stimulus, rapidly and selectively upregulates IL-8 in macrophages associated with a novel pattern of transcription factor activation. Acute hypoxia may represent one of potentially several proinflammatory stimuli responsible for rapid intrapulmonary IL-8 generation in patients at-risk of ARDS.
-
Cystic fibrosis (CF) is the most common, lethal autosomal recessive disease affecting children in the United States and Europe. Extensive work is being performed to develop both gene and drug therapies. The principal mutation causing CF is in the CFTR gene ([Delta F508]CFTR). This mutation causes the mutant protein to traffic poorly to the plasma membrane, and degrades CFTR chloride channel activity. CPX, a candidate drug for CF, binds to mutant CFTR and corrects the trafficking deficit. CPX also activates mutant CFTR chloride channel activity. CF airways are phenotypically inundated by inflammatory signals, primarily contributed by sustained secretion of the proinflammatory cytokine interleukin 8 (IL-8) from mutant CFTR airway epithelial cells. IL-8 production is controlled by genes from the TNF-alphaR/NFkappaB pathway, and it is possible that the CF phenotype is due to dysfunction of genes from this pathway. In addition, because drug therapy with CPX and gene therapy with CFTR have the same common endpoint of raising the levels of CFTR, we have hypothesized that either approach should have a common genomic endpoint. ⋯ Wild-type CFTR and CPX both suppress proinflammatory IL-8 secretion from CF epithelial cells. The mechanism, as defined by pharmacogenomic analysis, involves identified genes from the TNF-alphaR/NFkappaB pathway. The close relationship between IL-8 secretion and genes from the TNF-alphaR/NFkappaB pathway suggests that molecular or pharmaceutical targeting of these novel genes may have strategic use in the development of new therapies for CF. From the perspective of global gene expression, both gene and drug therapy have similar genomic consequences. This is the first example showing equivalence of gene and drug therapy in CF, and suggests that a gene therapy-defined endpoint may prove to be a powerful paradigm for CF drug discovery. Finally, because the GENESAVER algorithm is capable of isolating disease-relevant genes in a hypothesis-driven manner without recourse to any a priori knowledge about the system, this new algorithm may also prove useful in applications to other genetic diseases.
-
Mutations in the presenilin proteins cause early-onset, familial Alzheimer's disease (FAD). ⋯ Overall presenilin expression and the relative abundance of full-length and amino-terminal fragments in presenilin FAD cases were similar to control cases and sporadic AD cases. Thus, accumulation of full-length protein or other gross mismetabolism of neither PS2 nor PS1 is a consequence of the FAD mutations examined.