Journal of investigative medicine : the official publication of the American Federation for Clinical Research
-
This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fat-referenced quantitative MRI. Earlier published studies of this method are summarized, and a previously unpublished validation study, based on 4753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dual-energy X-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRIs show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 and 4.6 per cent for fat (computed from AT) and LT, respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of >20 per cent. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat, in combination with rapid scanning protocols and efficient image analysis tools, makes quantitative MRI a powerful tool for advanced body composition assessment.
-
Excessive drinking can lead to the development of immune dysfunction. Our aim is to investigate the effect of alcohol on immune activation from circulating peripheral blood monocytes in excessive drinkers (EDs). Twenty-two EDs and healthy controls were enrolled. ⋯ While no differences in the levels of circulating IL-6 and IL-10 were observed, the relative levels of gene transcripts (RQ) for Il6 (an M1-polarizing cytokine) and Il10 (an M2-polarizing cytokine) were significantly higher in peripheral blood-derived monocytes from EDs compared with controls (Il6: P<0.01. Il10: P<0.05). EDs exhibit early immune activation of peripheral blood monocyte mRNA transcripts, notably Il6 and Il10 Future studies are needed to explore the clinical implications of our findings and determine whether the levels of Il6 and Il10 mRNA expression can be used to identify those with excessive drinking and to monitor for alcohol abstinence.