Journal of molecular medicine : official organ of the "Gesellschaft Deutscher Naturforscher und Ärzte"
-
Silver-Russell syndrome (SRS) is characterized by growth failure and dysmorphic features and is frequently caused by hypomethylation (epimutation) of the H19-DMR. Although molecular and clinical studies have extensively been performed for SRS patients themselves, such studies have not been carried out for placentas. We identified 20 epimutation-positive and 40 epimutation-negative Japanese SRS patients and obtained placental weight data from 12 epimutation-positive and ten epimutation-negative patients and paraffin-embedded placental tissues for molecular and histological examinations from three epimutation-positive and two epimutation-negative patients. ⋯ Epimutation-positive patients had characteristic body phenotype and small placentas with hypoplastic chorionic villi, and epimutation-negative patients had somewhat small placentas with hypoplastic chorionic villi or massive infarction. Furthermore, significant correlations were identified between the H19-DMR methylation index and the body and placental sizes and between the placental weight and the body size in the epimutation-positive patients, whereas such correlations were not detected for the head circumference. These results suggest (1) characteristic phenotype and reduced IGF2 expression in the epimutation-positive placentas; (2) similarities and differences in the epigenetic control of the IGF2-H19 domain between leukocytes and placentas; (3) a positive role of the IGF2 expression level, as reflected by the methylation index, in the determination of body and placental growth in epimutation-positive patients, except for the brain where IGF2 is expressed biallelically; (4) involvement of placental dysfunction in prenatal growth failure; and (5) relevance of both (epi)genetic factor(s) and environmental factor(s) to SRS in epimutation-negative patients.
-
Mesenchymal stem cells (MSCs) can contribute to tissue repair by actively migrating to sites of tissue injury. However, the cellular and molecular mechanisms of MSC recruitment are largely unknown. The nuclear factor (NF)-kappaB pathway plays a pivotal role in regulating genes that influence cell migration, cell differentiation, inflammation, and proliferation. ⋯ In conclusion, we demonstrated that the NF-kappaB pathway components, p65 and IKK-2, are expressed in hMSCs. Our data provide evidence that this signal transduction pathway is implicated in TNF-alpha-mediated invasion and proliferation of hMSCs. Therefore, hMSC recruitment to sites of tissue injury may, at least in part, be regulated by the NF-kappaB signal transduction pathway.