Journal of molecular medicine : official organ of the "Gesellschaft Deutscher Naturforscher und Ärzte"
-
Glioblastoma multiforme (GBM) is the most malignant brain tumor and highly resistant to intensive combination therapies. GBM is one of the most vascularized tumors and vascular endothelial growth factor (VEGF) produced by tumor cells is a major factor regulating angiogenesis. Successful results of preclinical studies of anti-angiogenic therapies using xenograft mouse models of human GBM cell lines encouraged clinical studies of anti-angiogenic drugs, such as bevacizumab (Avastin), an anti-VEGF antibody. ⋯ Enhanced invasiveness is one such resistance mechanism and recent works report the contribution of activated MET signaling induced by inhibition of VEGF signaling. On the other hand, tumor cell-originated neovascularization including tumor-derived endothelial cell-induced angiogenesis and vasculogenic mimicry has been suggested to be involved in the resistance to anti-VEGF therapy. Therefore, these mechanisms should be targeted in addition to anti-angiogenic therapies to achieve better results for patients with GBM.
-
Congenital polycythemias have diverse etiologies, including mutations in the hypoxia sensing pathway. These include HIF2A at exon 12, VHL gene (Chuvash polycythemia), and PHD2 mutations, which in one family was also associated with recurrent pheochromocytoma/paraganglioma (PHEO/PGL). ⋯ We show that this is a gain-of-function mutation and demonstrate no loss-of-heterozygosity or additional somatic mutation of HIF2A in the tumor, indicating HIF2A (F374Y) may be predisposing rather than causative of PHEO/PGL. This report, in view of two other concomitantly reported PHEO/PGL patients with somatic mutations of HIF2A and polycythemia, underscores the PHEO/PGL-promoting potential of mutations of HIF2A that alone are not sufficient for PHEO/PGL development.