Current opinion in critical care
-
Energy metabolism is increasingly recognized as a key factor in the pathogenesis of acute brain injury (ABI). We review the role of cerebral lactate metabolism and summarize evidence showing that lactate may act as supplemental fuel after ABI. ⋯ Lactate can be a supplemental fuel for the injured brain and is important to regulate glucose metabolism and CBF. Exogenous lactate supplementation may be neuroprotective after experimental ABI. Recent clinical data from ABI patients suggest hypertonic lactate solutions may be a valid therapeutic option for secondary energy dysfunction and elevated ICP.
-
Curr Opin Crit Care · Feb 2014
Review Meta AnalysisVentilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and meta-analysis.
There is convincing evidence for benefit from lung-protective mechanical ventilation with lower tidal volumes in patients with the acute respiratory distress syndrome (ARDS). It is uncertain whether this strategy benefits critically ill patients without ARDS as well. This manuscript systematically reviews recent preclinical studies of ventilation in animals with uninjured lungs, and clinical trials of ventilation in ICU patients without ARDS on the association between tidal volume size and pulmonary complications and outcome. ⋯ Ventilation with lower tidal volumes protects against pulmonary complications, but well-powered randomized controlled trials are urgently needed to determine whether this ventilation strategy truly benefits all ventilated ICU patients without ARDS.
-
Curr Opin Crit Care · Feb 2014
ReviewEpithelial and endothelial damage induced by mechanical ventilation modes.
The adult respiratory distress syndrome (ARDS) is a common cause of respiratory failure with substantial impact on public health. Patients with ARDS generally require mechanical ventilation, which risks further lung damage. Recent improvements in ARDS outcomes have been attributed to reductions in deforming stress associated with lung protective mechanical ventilation modes and settings. The following review details the mechanics of the lung parenchyma at different spatial scales and the response of its resident cells to deforming stress in order to provide the biologic underpinnings of lung protective care. ⋯ Heterogeneity of stiffness and intercellular and intracellular stress failure are fundamental components of ARDS and their development also depends on the ventilation mode.
-
Esophageal pressure measurement well estimates pleural pressure. The interpretation of absolute values is often debated for various reasons, but the changes in pressure measured are considered very accurate provided that a number of precautions are taken. The information provided by these measurements is unique in nature and has an enormous potential to influence management. It allows to study the exact influence of the chest wall and to determine the real lung distending pressure. It is also the only way to quantify respiratory muscle activity and the work of breathing. ⋯ Application of esophageal pressure monitoring is limited by technical issues, the need for background physiological knowledge and the fact that very few studies have assessed a direct influence of this measurement on patients' outcome. The technique is underused in everyday practice.
-
Curr Opin Crit Care · Feb 2014
ReviewCell-based therapies for the acute respiratory distress syndrome.
Acute respiratory distress syndrome (ARDS) is a multifaceted lung disease with no current effective therapy. Many clinical trials using conventional pharmacologic therapies have failed, suggesting the need to examine alternative approaches. Thus, attention has focused on the therapeutic potential of cell-based therapies for ARDS, with promising results demonstrated in relevant preclinical disease models. We review data concerning the therapeutic promise of cell-based therapies for ARDS. ⋯ Cell-based therapies offer considerable promise for the treatment of ARDS. While MSC-based therapies are being rapidly advanced toward clinical testing, clear therapeutic potential exists for other cell types for ARDS. A greater understanding of current knowledge gaps should further enhance the therapeutic potential of cell-based therapies for ARDS.