Clinical drug investigation
-
Treatment challenges necessitate new approaches to customize care to individual patient needs. Integrating data from randomized controlled trials and observational studies may reduce potential covariate biases, yielding information to improve treatment outcomes. The objective of this study was to predict pregabalin responses, in individuals with painful diabetic peripheral neuropathy, by examining time series data (lagged inputs) collected after treatment initiation vs. baseline using microsimulation. ⋯ Effective prediction of pregabalin response for painful diabetic peripheral neuropathy was accomplished through combining cluster analyses, coarsened exact matching, and time series regressions, reflecting distinct patterns of baseline and "on-treatment" variables. These results advance the understanding of microsimulation to predict patient treatment responses through integration and inter-relationships of multiple, complex, and time-dependent characteristics.