Arteriosclerosis, thrombosis, and vascular biology
-
Arterioscler. Thromb. Vasc. Biol. · Apr 2000
Comparative StudyComparative in vitro efficacy of different platelet glycoprotein IIb/IIIa antagonists on platelet-mediated clot strength induced by tissue factor with use of thromboelastography: differentiation among glycoprotein IIb/IIIa antagonists.
In the present study, the in vitro efficacy of different platelet glycoprotein IIb/IIIa (GPIIb/IIIa) antagonists on platelet-fibrin-mediated clot strength under shear was compared with the antiaggregatory efficacy by using tissue factor (TF) thromboelastography (TEG). The ability of platelets to augment the elastic properties of blood clots under shear conditions was measured by computerized TEG under conditions of maximal platelet activation accelerated by recombinant TF. Under these conditions, platelets significantly enhance clot strength 8-fold (relative to platelet-free fibrin clots). ⋯ Platelet GPIIb/IIIa antagonists of class I, such as XV459 (free-acid form of roxifiban), DMP802, XV454, and c7E3, demonstrated comparable inhibitory dose responses of TF-TEG clot strength and platelet aggregation, with an IC(50) of 50 to 70 nmol/L. In contrast, platelet GPIIb/IIIa antagonists from class II, with comparable antiaggregatory efficacy, such as DMP728, YZ202 (free-acid form of orbofiban), YZ211 (free-acid form of sibrafiban), YZ751, and other antagonists, have a much lower efficacy in altering the strength of TF-mediated clot formation (IC(50) >1.0 micromol/L). These data suggest differential efficacy among different GPIIb/IIIa antagonists in inhibiting platelet-fibrin clot retraction despite of equivalent antiaggregatory potency.