Experimental neurology
-
Experimental neurology · May 1998
The effects of NGF and sensory nerve stimulation on collateral sprouting and gene expression in adult sensory neurons.
Collateral sprouting of mature cutaneous nociceptive fibers is regulated by the availability of NGF, and the onset of this sprouting can be accelerated by electrical stimulation of the intact nerve. To investigate this influence of stimulation on NGF-induced sprouting, the thoracic dorsal cutaneous nerves of adult rats were exposed and those on the left side of the animals were electrically stimulated. NGF was then administered daily for 1-12 days. ⋯ The NGF treatment resulted in the upregulation of BDNF mRNA to peak levels within the first 2 days of treatment, although the electrical stimulation had little additional effect. These results demonstrate that exogenously supplied NGF itself can elicit sprouting from intact cutaneous nociceptive afferents and that electrical stimulation further influences the expression of mRNAs involved in the sprouting response. While the increases in NGF receptors and GAP-43 mRNA have been shown to be associated with collateral sprouting, the role of BDNF is not clear, but may be involved in altered sensory processing (i.e., hyperalgesia) that has been shown to occur subsequent to NGF administration.
-
Experimental neurology · May 1998
Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1.
Recent evidence points to a role of cytokines like tumor necrosis factor-alpha (TNF) in the generation of hyperalgesia not only in inflammatory, but also in neuropathic pain. We used the model of chronic constrictive injury (CCI) of one sciatic nerve in the mouse to investigate which of the two known TNF receptors is involved in the process that leads to hyperalgesia after nerve injury. ⋯ Neutralizing antibodies to TNFR2 had no effect. We conclude that TNFR1, but not TNFR2, is mediating thermal hyperalgesia and mechanical allodynia after nerve injury.