Experimental neurology
-
Experimental neurology · Nov 1999
Comparative StudyEffects of vaginal birth versus caesarean section birth with general anesthesia on blood gases and brain energy metabolism in neonatal rats.
Using a rat model, several laboratories have demonstrated long-term effects of Caesarean section (C-section) birth or of global hypoxia during C-section birth on a variety of central nervous system (CNS) parameters. These studies used C-section delivery from rapidly decapitated dams, to avoid confounding anesthetic effects, or from dams anesthetized with halothane or ether under unspecified conditions. Systemic oxygenation or cerebral energy metabolites in the pups at birth have not been systematically measured in this model. ⋯ In conclusion, rat neonates show minimal signs of systemic or CNS hypoxia following C-section birth under 2.5% isoflurane with N2O. However, there is a rather narrow window of isoflurane concentrations which produces effective maternal anesthesia without producing respiratory compromise in the neonate. Thus the results indicate that the level of maternal anesthesia employed is an important factor influencing neonatal systemic and CNS oxygenation during C-section birth.
-
Experimental neurology · Nov 1999
Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation.
Extrinsic factors appear to contribute to the lack of regeneration in the injured adult spinal cord. It is likely that these extrinsic factors include a group of putative growth inhibitory molecules known as chondroitin sulfate proteoglycans (CSPGs). The aims of this study were to determine: (1) the consequences of spinal cord contusion injury on CSPG expression, (2) if CSPGs can be degraded in vivo by exogenous enzyme application, and (3) the effects of intraspinal transplantation on the expression of CSPGs. ⋯ CSPG-IR patterns suggest that these molecules may contribute to the limited regeneration seen following intraspinal transplantation. In addition, it suggests that the growth permissiveness of the graft may change overtime as CSPG expression develops within the graft. These correlations in the injured and transplanted spinal cord support CSPGs' putative growth inhibitory effect in the adult spinal cord.
-
Experimental neurology · Nov 1999
Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury.
Experimental traumatic brain injury (TBI) results in a rapid and significant necrosis of cortical tissue at the site of injury. In the ensuring hours and days, secondary injury exacerbates the primary damage, resulting in significant neurological dysfunction. Recent reports from our lab and others have demonstrated that the immunosuppressant cyclosporin A (CsA) is neuroprotective following TBI. ⋯ Similarly, synaptosomes isolated from CsA-treated animals demonstrate a significant increase in mitochondria membrane potential, accompanied by lower levels of intramitochondrial Ca2+ and reactive oxygen species production than seen in vehicle-treated animals. These results suggest that the neuroprotective properties of CsA are mediated through modulation of the MPTP and maintenance of mitochondria homeostasis. Amelioration of cortical damage with CsA indicates that pharmacological therapies can be devised which will significantly alter neurological outcome after injury.