Experimental neurology
-
Experimental neurology · Feb 1999
Effect of repeated L-DOPA, bromocriptine, or lisuride administration on preproenkephalin-A and preproenkephalin-B mRNA levels in the striatum of the 6-hydroxydopamine-lesioned rat.
Abnormal involuntary movements, or dyskinesias, plague current symptomatic approaches to the treatment of Parkinson's disease. The neural mechanisms underlying the generation of dyskinesia following repeated l-3,4-dihydroxyphenylalanine (L-DOPA) or dopamine agonist administration in Parkinson's disease remain unknown. However, de novo administration of bromocriptine or lisuride to either l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates or patients can alleviate parkinsonian symptoms without the development of dyskinesia. ⋯ However, following repeated bromocriptine or lisuride administration no increase in PPE-B expression was observed and the lesion-induced increase in PPE-A expression was normalized to prelesion levels. Increased PPE-A and PPE-B levels may, through decreasing GABA and glutamate release, respectively, in output nuclei of the basal ganglia, play a role in the development of L-DOPA- and dopamine-agonist induced dyskinesia in Parkinson's disease. These studies suggest that anti-parkinsonian treatments which are not associated with an elevation in PPE-B and/or normalize elevated PPE-A precursor expression, such as NMDA-receptor antagonists or long-acting dopamine D2 receptor agonists, e.g., cabergoline or ropinirole, may reduce dyskinesia in Parkinson's disease.