Experimental neurology
-
Experimental neurology · Mar 1999
The effect of a peripheral nerve lesion on calbindin D28k immunoreactivity in the cervical ventral horn of developing and adult rats.
Expression of calbindin D28k (CB) immunoreactivity by putative Renshaw cells is substantially downregulated by sciatic motoneuron axotomy in the adult rat. The present study investigated the effect of median and ulnar nerve lesion at different ages on ventral horn CB immunoreactivity 7 days after the injury to see whether similar results were obtained in the cervical cord and during development. Two major differences were observed. ⋯ The group of CB immunopositive neurons located among the converging ventral roots in the cervical cord were closely apposed by many axon terminals immunoreactive for (i) vesicular acetylcholine transporter and (ii) cholera toxin B localized to motor axon collaterals by injection of this tracer into a distal forelimb muscle. We conclude that motoneuron axotomy need not always downregulate CB expression in associated Renshaw cells. In addition, some brachial motoneurons respond to axotomy by expressing CB.
-
Experimental neurology · Mar 1999
Comparative StudyComparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat.
The majority of human spinal cord injuries involve gray matter loss from the cervical or lumbar enlargements. However, the deficits that arise from gray matter damage are largely masked by the severe deficits due to associated white matter damage. We have developed a model to examine gray matter-specific deficits and therapeutic strategies that uses intraspinal injections of the excitotoxin kainic acid into the T9 and L2 regions of the spinal cord. ⋯ Kainic acid injections into T9 resulted in substantial gray matter damage; however, BBB scores and tcMMEP response latencies were not different from those of controls. In contrast, kainic acid injections into L2 resulted in paraplegia with BBB scores similar to those following contusion injuries at either T9 or L2, without affecting tcMMEP response latencies. These observations demonstrate that gray matter loss can result in significant functional deficits, including paraplegia, in the absence of a disruption of major descending pathways.