Experimental neurology
-
Experimental neurology · Apr 2000
Comparative StudyEffect of axotomy on expression of NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the superior cervical ganglion studied with double-labeling in situ hybridization and immunohistochemistry.
Using double-labeling techniques for both in situ hybridization and immunohistochemistry some peptides and peptide receptors were studied quantitatively in a sensory and a sympathetic ganglion after axotomy. In the lumbar 5 dorsal root ganglion (DRG) normally no neuropeptide Y- and only a few galanin-positive cell bodies are seen. Following complete transection of the sciatic nerve around 60% of all neuropeptide Y (NPY) neuron profiles (NPs) were galanin positive (+) and 33-44% of all galanin NPs were NPY(+). ⋯ However, the immunohistochemical analysis in the SCG demonstrated much lower numbers of peptide-positive neurons than seen with in situ hybridization, suggesting that the latter technique is more sensitive. The fact that a considerable number of neurons express NPY together with Y1- and/or Y2-Rs indicates that both receptors may act as autoreceptors, the Y1-R presumably at the level of the cell body and the Y2-R on nerve terminals in the dorsal horn and/or the periphery. The present results also show that in both sensory and sympathetic neurons there is a strong upregulation of the Y2-R after nerve injury, suggesting a possible role in trophic and regenerative events.
-
Experimental neurology · Apr 2000
Nerve injury-induced mechanical but not thermal hyperalgesia is attenuated in neurokinin-1 receptor knockout mice.
Mice lacking the gene encoding for substance P and neurokinin A, or the NK-1 receptor, exhibit alterations in behavior to various acute nociceptive stimuli. However, behavioral responses of NK-1 mutant animals have not been well characterized in models of chronic pain. We studied the behavioral responses of NK-1 knockout and wild-type control mice to thermal and mechanical stimuli before and after inducing chronic neuropathic pain by unilateral ligation of the L5 spinal nerve. ⋯ Similarly, the increase in withdrawal frequency to the cooling stimuli following the nerve injury was not different in the NK-1 knockout and wild-type mice. Mechanical hyperalgesia in the wild-type mice was not reversed by systemic administration of phentolamine, suggesting that the pain is not sympathetically maintained. The results indicate that NK-1 receptors contribute to the development of mechanical, but not thermal, hyperalgesia in neuropathic pain.