Experimental neurology
-
Experimental neurology · Jul 2000
Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF.
Local delivery of therapeutic molecules represents one of the limiting factors for the treatment of neurodegenerative disorders. In vivo gene transfer using viral vectors constitutes a powerful strategy to overcome this limitation. The aim of the present study was to validate the lentiviral vector as a gene delivery system in the mouse midbrain in the perspective of screening biotherapeutic molecules in mouse models of Parkinson's disease. ⋯ Apomorphine-induced rotation was significantly decreased in the GDNF-injected group compared to control animals. Moreover, GDNF efficiently protected 69.5% of the tyrosine hydroxylase-positive cells in the substantia nigra against 6-hydroxydopamine-induced toxicity compared to 33.1% with control mutated GDNF. These data indicate that lentiviral vectors constitute a powerful gene delivery system for the screening of therapeutic molecules in mouse models of Parkinson's disease.
-
Experimental neurology · Jul 2000
Fetal ventral mesencephalic grafts functionally reduce the dopamine D2 receptor supersensitivity in partially dopamine reinnervated host striatum.
Grafting of ventral mesencephalic tissue in Parkinson's disease results in a partial dopaminergic reinnervation of host brain and dopamine agonist-induced rotational behavior is not completely reversed. To study a possible malfunction of the grafts, extracellular recordings with local applications of quinpirole were utilized and the neurophysiological results showed that a normalization of the upregulated dopamine D2 receptor supersensitivity occurred in reinnervated areas of the host striatum as well as in noninnervated areas remote from the graft innervation. Furthermore, the inhibitory effects on striatal nerve cell firing rate by the D1 receptor agonist SKF 81297 were not different in noninnervated or reinnervated areas of the striatum compared to the control side as seen from the dose-response curves. ⋯ However, a lower dose of apomorphine (0.005 mg/kg) showed no effects on striatal firing in graft reinnervated striata but only after dopamine depletion. In conclusion, the D2 supersensitivity is downregulated in graft-reinnervated striatum as well as in striatal areas lateral to the reinnervation when using selective D2 agonists, but the downregulation is not completely normalized when studying combined effects of D1/D2 agonists. Furthermore, the striatal neurons were firing significantly faster in noninnervated areas compared to reinnervated areas of graft-reinnervated striatum, which was most likely not due to changes in the glutamatergic input.