Experimental neurology
-
Experimental neurology · Dec 2001
Effect of creatine supplementation on metabolite levels in ALS motor cortices.
Mitochondrial pathology is an early observation in motor neurons and skeletal muscle of patients with amyotrophic lateral sclerosis (ALS). To clarify the relevance of this finding, we determined the effects of a 1-month oral administration of creatine on (1)H NMR-visible metabolites in the motor cortices of 15 controls and 15 patients with sporadic ALS, most of whom had mitochondrial pathology in skeletal muscle. In the motor cortex of the ALS group the N-acetylaspartate (NAA)/creatine (Cr(t)) metabolite ratio was lower than in our control group, indicating NAA loss. ⋯ In contrast, in the ALS patient group the NAA/Cr(t) and the NAA/Cho metabolite ratios remained unchanged, while the Glx/Cr(t) and Glx/Cho metabolite ratios decreased. These data are compatible with the interpretation that creatine supplementation causes an increase in the diminished NAA levels in ALS motor cortex as well as an increase of choline levels in both ALS and control motor cortices. Because NAA is synthesized by mitochondria in an energy-dependent manner and the NAA/Cho metabolite ratios in the ALS motor cortices were found to be correlated to the degree of mitochondrial pathology in ALS skeletal muscle, our results can be explained by a deficiency of enzymes of mitochondrial respiratory chain in the ALS motor cortex which might affect motor neuron survival.
-
Experimental neurology · Dec 2001
Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons.
Traumatic axonal injury (TAI) contributes to morbidity and mortality following traumatic brain injury (TBI). Single-label immunocytochemical studies employing antibodies to neurofilament compaction (NFC), RM014, and antibodies to APP, a marker of impaired axonal transport (AxT), have shown that TAI involves both NFC and disruption of AxT. Although it may be hypothesized that both events occur within the same injured axon, this has not been confirmed. ⋯ However, the APP single-labeled small-caliber axons and APP/RM014 dual-labeled large-caliber axons revealed a progressive accumulation of organelles associated with increased axonal swelling over time. In contrast to previous thought, it now appears that NFC may occur independent of impaired AxT in TAI. This finding underscores the complexity of TAI, suggesting the need for multiple immunocytochemical approaches to fully assess the overall axonal response to TBI.